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ABSTRACT 

 It is common in the implementation of teacher accountability systems to use a procedure 
known as Empirical Bayes shrinkage to adjust the teacher value-added estimates by their level of 
precision. Because value-added estimates based on fewer students and students with “hard-to-
predict” achievement will be less precise, the procedure could have differential impacts on the 
probability that the teachers of fewer students or students with hard-to-predict achievement will be 
assigned consequences. This paper investigates how shrinkage affects the value-added estimates of 
teachers of hard-to-predict students, focusing on the context of threshold-based accountability 
systems. We found that the achievement of particular groups of students—students with low prior 
achievement and who receive free lunch—is harder to predict. Teachers of these types of students 
tend to have less precise value-added estimates, and shrinkage increases their estimates’ precision. 
Shrinkage also reduces the absolute value of the value-added estimates of teachers of hard-to-predict 
students. However, in our data, we found that shrinkage has no statistically significant effect on the 
relative probability that teachers of hard-to-predict students receive consequences. 
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I. INTRODUCTION 

Due to the incentives provided by the federal Race to the Top program, districts and states are 
rapidly implementing new teacher evaluation systems to make high-stakes decisions about tenure, 
pay, and retention, based in part on statistical measures of teacher effectiveness. These evaluation 
systems generally incorporate multiple measures of effective teaching, such as student achievement 
growth, classroom observations, and student learning objectives (Mihaly et al. 2013). One of the 
most controversial has been the student achievement growth component, for which districts have 
used different approaches. One common approach is to use a value-added model (VAM) to estimate 
teachers’ contributions to student achievement on standardized assessments. 

VAMs predict individual student achievement based on the student’s characteristics, including 
baseline achievement, and compare this prediction with the actual achievement of a teacher’s 
students. The prediction is derived using data on other students in the state or district and represents 
what we would expect the student to achieve if he or she were taught by the average teacher. The 
difference between how a teacher’s students actually performed and how they were predicted to 
perform represents the estimate of the teacher’s value added to student achievement. 

The precision of the teacher’s value-added estimate is related to the average differences between 
the actual and predicted performance of the students in a teacher’s class. Precision depends both on 
the number of students matched to the teacher and the accuracy of the model for predicting the 
achievement of the specific students in the teacher’s class. All else being equal, the estimates of 
teachers matched to fewer students are more likely to be imprecise because one or two students’ 
having unusually high or low achievement growth can more heavily influence these estimates. The 
accuracy of the model is affected by the existence of factors that influence achievement but are not 
observed in the data. Some students may have achievement that is hard to predict in the sense that 
their background characteristics are not very informative about their future achievement. The role of 
this potential heteroskedasticity—variation in the accuracy of predictions across student groups—has 
received relatively little attention in the value-added literature.1 However, Stacy et al. (2012) found 
that students with low socioeconomic status and low prior achievement had less-accurate predicted 
scores than more-advantaged students. They showed that the value-added estimates of teachers who 
had many disadvantaged students were less stable over time. 

It is common in the implementation of teacher accountability systems—including in the District 
of Columbia, New York City, and Los Angeles—to use a procedure known as Empirical Bayes (EB) 
shrinkage to adjust the teacher value-added estimates by their level of precision.2 The adjusted 

                                                 
1 A number of studies have examined the extent to which nonrandom assignment of students to teachers causes 

bias in teacher value-added estimates and teachers to be misclassified (for example, Aaronson et al. 2007; Kane and 
Staiger 2008; Rothstein 2010; Chetty et al. 2011; Guarino et al. 2012). Although these studies tend to focus on the point 
estimates, this paper examines the estimates’ variances. 

2 The shrinkage estimates are called the best linear unbiased predictors (BLUPs) because they minimize the 
expected mean squared error (MSE) between teachers’ estimates and their actual contributions. However, critics of the 
approach note that it obtains these properties by intentionally introducing statistical bias in the estimates and does not 
generally provide an accurate ranking of teachers (Tate 2004). 
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estimate is a weighted average of the teacher’s initial value-added estimate and the value-added of an 
average teacher, with more precise estimates receiving greater weight. This procedure is called 
shrinkage because less precise estimates receive lower weight in the adjustment and are shrunk 
toward the average. Because value-added estimates based on fewer students and students with hard-
to-predict achievement will be less precise, the procedure could have differential impacts on the 
probability that the teachers of fewer students or students with hard-to-predict achievement will be 
assigned consequences. For example, in the absence of shrinkage, teachers with very few students 
could be more likely to end up in the extremes of the distribution.3 Similarly, if teachers of 
disadvantaged students have imprecise initial value-added estimates, shrinkage could reduce the 
probability that these teachers end up in the extremes of the distribution. 

How shrinkage affects the probability that teachers of particular types of students will receive 
consequences depends on the designs of accountability systems. As shown in Table 1, most 
evaluation systems use thresholds to identify highly effective or ineffective teachers and assign 
consequences. Because consequences are often discrete—for example, whether to retain the teacher 
or whether to require the teacher to receive professional development—very small changes in a 
teacher’s estimate near the threshold can have substantial consequences. In designing a high-stakes 
accountability system, one goal is to avoid classification errors.4 

In these systems, shrinkage is conceptually appealing because it produces estimates of teacher 
effectiveness that are conservative in the assignment of consequences to teachers. Shrinkage 
estimates are conservative because an imprecise estimate will be shrunk more to the overall average, 
and the teacher might be less likely to be assigned consequences as a result. Because precision 
depends on the number of students and the characteristics of the students in a teacher’s class, 
shrinkage could potentially reduce the probability that teachers of these types of students receive 
consequences. This might be desirable in evaluation systems because differences in teachers’ 
probabilities of being misclassified could be considered unfair and have deleterious effects on 
teachers’ incentives to teach classes that include certain groups of students. 

 This paper investigates how shrinkage affects the value-added estimates of teachers of hard-to-
predict students, focusing on the context of threshold-based accountability systems. We examine 
three main questions: 

1. What student characteristics are correlated with having hard-to-predict test scores? 
2. Are these student characteristics correlated with how much teacher value-added 

estimates change when shrinkage methods are used? 
3. Are these student characteristics correlated with how much shrinkage affects the 

probability that these teachers’ estimates exceed policy-relevant thresholds? 

Consistent with heteroskedasticity, we find that the achievement of particular students, such as 
students with low prior achievement and who receive free lunch, is harder to predict. Teachers of 
                                                 

3 Kane and Staiger (2002) found that small schools were more likely to have large changes in achievement across 
years than large schools. 

4 Shrinkage could also differentially reduce the probability of consequences for teachers with greater variation in 
their true impacts on students. Variation in true impacts cannot be disentangled from variation due to random shocks to 
student performance, and the shrinkage procedure errs on the side of attributing imprecision to random variation rather 
than to variation in true impacts. 
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these types of students tend to have less precise value-added estimates and shrinkage increases their 
estimates’ precision. Shrinkage also reduces the absolute value of the value-added estimates of 
teachers of hard-to-predict students. However, in our data, shrinkage has no statistically significant 
effect on the relative probability that teachers of hard-to-predict students receive consequences. 

 The main contribution of this paper is to examine heteroskedasticity and shrinkage in the 
context of accountability systems based on thresholds. This differs from other papers on shrinkage, 
which examine how shrinkage affects teacher ranks (Tate 2004; Guarino et al. 2012), and other work 
on heteroskedasticity, which examines its effect on the precision and inter-year stability of value-
added estimates (Stacy et al. 2012). Our purpose is to examine how shrinkage affects the probability 
that teachers of hard-to-predict students are classified at the extremes of the value-added 
distribution of teacher effectiveness, because many evaluation systems use these thresholds to 
determine consequences. 

II. THEORY 

 To illustrate how heteroskedasticity affects estimates of teacher value added, we present the 
following VAM: 

ሺ1ሻ   ௜ܻ௚௧ ൌ ߣ  ௜ܻ,௚ିଵ ൅ ࢚ࢍ࢏ࢄᇱࢻ ൅ ௧ߠ ൅  ௜௚௧ߝ

where ௜ܻ௚௧ is the test score of student i in grade g who has teacher t and ௜ܻ,௚ିଵ is the prior test score 
for student i in the previous grade g-1. The vector ࢚ࢍ࢏ࢄ denotes control variables for student 
demographic characteristics, ߠ௧ is a vector of teacher effects,5 and ߝ௜௚௧ is the student-level error 
term. 

 Under homoskedasticity, all student-level errors ߝ௜௚௧ have the same variance—the accuracy of a 
predicted score does not depend on the characteristics of the student. However, estimates of 
precision typically allow for the possibility of heteroskedastic errors. One possible cause of 
heteroskedasticity is measurement error in test scores. Typically, standardized test scores near the 
center of the distribution are more reliable than scores in the tails of the distribution (for example, 
CTB/McGraw-Hill 2011).6 Consequently, students who are likely to be at the top or the bottom of 
achievement distribution might tend to have less-accurate predicted scores. Another reason for 
heteroskedasticity is the presence of unobserved factors that affect achievement. For example, we do 
not observe parental involvement or students’ motivation, which could affect achievement and vary 
across different types of students. 

                                                 
5 Teacher effects can be estimated as random variables that are independent of other factors affecting test scores or 

as fixed effects that might be correlated with the other factors affecting test scores. We use the latter method, which 
estimates teacher effects as fixed effects, to account for the possibility that teacher assignments are correlated with the 
covariates included in the model. 

6 Standardized tests are designed to differentiate students who are proficient from those who are not, so they 
provide more reliable scores for students around the level of proficiency. Koedel et al. (2012) developed a method for 
accounting for measurement error that varies across the achievement distribution. 
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 Shrinkage places less weight on imprecise initial value-added estimates when constructing the 
final value-added estimates. If teachers who are assigned students with large residuals tend to have 
imprecise estimates of initial value added, then the shrinkage procedure will proportionately shrink 
the estimates of these teachers more and the final estimates of these teachers will be proportionately 
more precise than without shrinkage. This relationship means that shrinkage reduces but does not 
eliminate differences in variances of value-added estimates. 

 To see this, consider the EB shrinkage procedure outlined in Morris (1983). A teacher’s 
shrinkage estimate is the weighted average of the teacher’s pre-shrinkage value-added estimate and 

the estimate for the average teacher. Let t̂  be the mean-centered pre-shrinkage point estimate for 
teacher t from the value-added regression model, and let the associated heteroskedasticity-robust 
variance estimate be 2ˆ ˆt tVar      . The EB estimate for a teacher is approximately equal to a 

precision-weighted average of t̂  and the overall mean of all estimated teacher effects.7 Because the 
overall mean of the estimated teacher effects is zero by design, the teacher’s EB estimate ˆEB

t can be 
written as follows: 

(2) 
2

2 2

ˆˆ ˆ
ˆ ˆ

EB
t t

t

 
 
 

     

where ̂  is an estimate of the standard deviation of teacher effects (purged of sampling error), 

which is constant for all teachers. The term  2 2 2ˆ ˆ ˆt    must be less than one, so the EB 

estimate always has a smaller absolute value than the initial estimate. 

 Although heteroskedasticity in student background characteristics does not affect the pre-
shrinkage point estimates, it does affect the variance of the teacher estimates and, thus, the EB 
estimates. The change in the EB estimate in response to a change in the variance of the pre-
shrinkage estimate is given by the following: 

(3) 
2

2 2

ˆ ˆ ˆ
ˆ ˆ

EB
t t

t
t

w 
 


 


 

where  2 2 2ˆ ˆ ˆ ˆt tw     , the weight on the pre-shrinkage estimate. The negative sign indicates 

that estimates of teachers who teach students with characteristics that produce large residuals are 
shrunk more than those of teachers who teach students with smaller residuals. The extra shrinkage is 
largest for teachers with larger unshrunken estimates and for teachers with more of the types of 
students who tend to produce large residuals. The extra shrinkage will tend to distort the 
relationship between teacher effectiveness and teachers’ average student characteristics related to 

                                                 
7 In Morris (1983), the EB estimate does not exactly equal the precision-weighted average of the two values due to 

a correction for bias. This adjustment increases the weight on the overall mean by (K – 3)/(K – 1), where K is the 
number of teachers. For ease of exposition, we have omitted this correction from the description given here and 
consider this expression to hold with equality. 
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heteroskedasticity (or other characteristics of teachers or classrooms related to heteroskedasticity). 
This is an example of the trade-off implicit in shrinkage between introducing bias and the choice to 
minimize the mean squared error (MSE) of the estimates;8 the negative relationship in Equation (3) 
does not indicate that these teachers are more or less effective on average—it is instead an artifact of 
being conservative in handing out extreme value-added scores to teachers. 

 One benefit of the trade-off between bias and MSE is the increased efficiency of the EB 
estimator. This can be seen in the lower variances associated with the EB estimates. Ignoring the 

sampling error associated with 2̂  and 2ˆt , the variance of a teacher’s EB estimate is approximately 
equal to9 

(4) 2ˆ ˆ ˆEB
t t tVar w      

Thus, the EB estimate has a smaller variance than that of the pre-shrinkage estimate, because ˆ tw  is 
less than one. 

Heteroskedasticity affects ˆEB
tVar  

   through the variance on the pre-shrinkage estimates. The 

change in the variance of a teacher’s EB estimate in response to a change in the variance of the pre-
shrinkage estimate is proportional to the square of the weight on the point estimate in the EB 
calculation: 

(5) 2
2

ˆ
ˆ

ˆ

EB
t

t
t

Var
w





    


 

Because ˆ tw  is less than one but greater than zero, shrinkage reduces but does not eliminate 
heteroskedasticity from the EB estimates. This suggests that shrinkage might mitigate but will not 
eliminate the differential probability that teachers of hard-to-predict students are classified in the 
extremes of the value-added distribution. 

III. VALUE-ADDED MODEL AND DATA 

 We estimate teacher value added using data from the District of Columbia Public Schools 
(DCPS) and the Office of the State Superintendent of Education of the District of Columbia 

                                                 
8 Morris (1983) and others refer to EB estimates as unbiased. For example, the EB random effects estimator is 

often called the BLUP. The EB estimates are unbiased only in the sense that the expectation of the mean over all groups 
(teachers) gives an unbiased estimate of the true mean over the population of group effects. As a direct consequence of 
Equation (3), a particular teacher’s EB estimate is not generally an unbiased estimate of that teacher’s true effect. 

9 The actual formula we employ for the variance of the EB estimates is based on a formula in Morris (1983) that 
accounts for sampling error in the estimated variances and makes degrees of freedom corrections. For ease of 
exposition, we have omitted these corrections from the description given here and consider this expression to hold with 
equality. 
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(OSSE).10 The data contain information on students’ test scores and demographic characteristics 
and, importantly for the estimation of value added, enable students to be linked to their teachers. In 
the DCPS, students in grades 3 through 8 and 10 are tested in math and reading using the District of 
Columbia Comprehensive Assessment System (DC CAS) tests. Our analysis is based on students 
who were in grades 4 through 8 during the 2011–2012 school year and who had both pre- and post-
test scores. To enable us to compare students across grades, we standardize student test scores 
within subject, year, and grade to have a mean of 0 and a standard deviation of 1. We exclude 
students who are repeating the grade so that in each grade, we compare only students who 
completed the same examinations. We estimate the following VAM separately for teachers of 
elementary (grades 4 and 5) and middle school (grades 6 through 8) students: 

(6) ' '
( 1) ( 1) 1ig g i g g i g i g ti tigY Y Z X T             

where igY  is the post-test score for student i in grade g and ( 1)i gY   is the same-subject pre-test for 

student i in grade g-1 during the previous year. The variable ( 1)i gZ   denotes the pre-test in the 

opposite subject. Thus, when estimating teacher effectiveness in math, igY  and ( 1)i gY   represent 

math tests, with ( 1)i gZ   representing reading tests and vice versa. The pre-test scores capture prior 

inputs into student achievement, and the associated coefficients g  and g  vary by grade. The 

vector iX  denotes control variables for individual student background characteristics—specifically, 
indicators for free lunch eligibility, reduced-price lunch eligibility, limited English proficiency, and 
special education status. The coefficients on these characteristics are constrained to be the same 
across grades within each grade span. The vector g  includes grade indicators. 

 The vector tiT  contains one indicator variable for each teacher. A student contributes one 
observation to the model for each teacher to whom the student is linked. This contribution is based 
on a roster confirmation process that enables teachers to indicate whether and for how long they 
have taught the students on their administrative rosters and to add any students who are not listed 
on their administrative rosters (Hock and Isenberg 2012). Students are weighted in the regression 
according to their dosage, which indicates the amount of time the teacher taught the student.11 The 
vector   includes one coefficient for each teacher. Finally,  tig  is the random error term. 

 The VAM in Equation (6) is estimated in two regression steps: 

                                                 
10 Isenberg and Hock (2012) provide additional information about the DC data and VAM used for accountability 

purposes. The VAM used in this paper differs slightly. 

11 To estimate the effectiveness of teachers who share students, we use a technique called the full roster plus 
method, which attributes equal credit to teachers of shared students. In this method, each student contributes one 
observation to the model for each teacher to whom he or she is linked and students are weighted based on the dosage 
they contribute (Hock and Isenberg 2012). Then we create additional observations to equalize the dosage that each 
student contributes to the model. The proportion of dosage each student contributes to a teacher remains unchanged 
because the additional observations are linked to a distinct set of so-called shadow teacher indicators. Coefficient 
estimates for these shadow teachers are discarded. 
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1. Measurement error correction. Measurement error in the pre-test scores will attenuate 
the estimated relationship between the pre- and post-test scores. We adjust for 
measurement error using an errors-in-variables correction (eivreg in Stata) that relies on 
published information on the test-retest reliability of the DC CAS. We use errors-in-
variables regression to regress the post-test score on the pre-test scores, student 
background characteristics, and grade and teacher indicators. Because the errors-in-
variables regression does not allow for standard errors to be clustered by student, in this 
step we obtain adjusted gain scores, which subtract the predicted effects of the pre-test 
scores from the post-test scores, which we use to obtain the initial teacher effects in the 
next step. Notably, because the measurement error correction accounts only for 
measurement error that is constant across the test score distribution, any measurement 
error that varies across the distribution will contribute to heteroskedasticity. 

2. Main regression. We estimate teacher effects by regressing the adjusted gain scores 
from the first step on student background characteristics, grade and teacher indicators, 
and by clustering standard errors by student. The initial teacher value-added estimates are 
the coefficients on the teacher indicators in this regression, and their variance is given by 
the squared standard errors of the coefficient estimates. As a final step, we remove any 
teachers with fewer than 15 students from the teacher model and recenter the value-
added estimates to have a mean of 0. 

We then calculate the EB estimates by applying Equation (2) to the initial estimates and 
variances from the main value-added regression. We also calculate the variance of the EB estimates 
using Equation (4). 

Teachers vary in the characteristics of students that they teach. Table 2 displays the summary 
statistics for the 297 elementary school teachers (top panel) and 182 middle school teachers (bottom 
panel) in our sample. For simplicity, we restrict our analysis to math teachers and exclude teachers 
linked to fewer than 15 or more than 150 students. 

Because groups of students with large residuals will affect the precision of teacher value-added 
estimates only if they are unevenly distributed across teachers, the table reports the teacher-level 
averages of student characteristics. For homeroom teachers—typically elementary school teachers—
these values are the average characteristics of the students in the teachers’ classrooms, whereas for 
departmentalized teachers, these values are averaged across multiple classes. Table 2 shows that 
there is wide variation in students’ test scores and classroom composition across teachers. For 
example, in math, the average pre-test scores of teachers’ students range from –1.34 to 1.36 standard 
deviations in elementary school and from –1.12 to 1.16 standard deviations in middle school. 
Teachers also vary substantially in the percentage of students eligible for free and reduced-price 
lunch, limited English proficiency, and special education students they teach. 

Table 2 also reports the number of student-equivalents taught by teachers, which weights the 
number of students taught by teachers by their dosages—that is, the portions of time that individual 
students were enrolled in their teachers’ classes. Elementary school teachers are typically linked to 
fewer students than middle school teachers, consistent with more departmentalized teachers in 
middle school. However, even within a grade span there is considerable variation in student-
equivalents across teachers, which could affect the precision of value-added estimates. 

Post-shrinkage value-added estimates and variances are smaller than the pre-shrinkage 
estimates. Table 2 presents the pre-shrinkage and shrinkage value-added estimates and their 
estimated variances. For elementary school teachers, the pre-shrinkage estimates range from –0.90 to 
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0.96 and the estimated pre-shrinkage variances range from 0 to 0.07. Because the shrinkage 
procedure assigns the pre-shrinkage estimates and variances weights that are less than 1—the 
average weight for elementary teachers is 0.85—the shrinkage estimates have a smaller range than 
the pre-shrinkage estimates and the shrinkage variances are smaller than the pre-shrinkage variances. 
For elementary school teachers, the post-shrinkage estimates range from –0.77 to 0.71 and the 
estimated post-shrinkage variances range from 0.04 to less than 0.005. 

In the next section, we describe our methodology to examine how differences in the 
characteristics of teachers’ students are related to precision and how accounting for imprecision 
using shrinkage affects the probability that teachers are classified in the extremes of the value-added 
distribution based on their students’ characteristics. 

IV. EMPIRICAL APPROACH 

To describe heteroskedasticity in the student-level errors, we estimate the relationship between 
the squared residuals from the VAM—a measure of the accuracy of the prediction—and student 
characteristics using the following student-teacher-level regression: 

௧̂௜௚ߝ  (7)
ଶ ൌ ߙ ൅ ߚ ௜ܺ ൅ ߭௧௜௚ 

The outcome ߝ௧̂௜௚
ଶ  is the squared residuals for student i in grade g with teacher t from the student-

teacher-level regression of student test scores on student characteristics and grade and teacher 
indicators. Because the VAM contains teacher indicators, these residuals are the remaining variation 
in student outcomes after taking into account the average differences in the effectiveness of 
students’ teachers. Thus, unpredictable outcomes for certain types of students do not simply reflect 
assignment of these students to teachers with a wider distribution of ability levels. Instead, the 
residuals measure the remaining difference between these students’ outcomes and those of other 
students taught by the teacher. The vector ௜ܺ denotes student characteristics (that is, average math 
and reading pre-test scores, eligibility for free or reduced-price lunches, limited English proficiency, 
and special education status), and ߭௜௚௧ is an error term. 

 The regression in Equation (7) is intended to provide a parsimonious description of 
heteroskedasticity and not a formal test for its presence. For ease of interpretation, we estimate these 
regressions separately for each student characteristic and grade span; the sole exceptions to the 
separate regressions are eligibility for free or reduced-price lunch, which are entered simultaneously 
into the regression.12 To address repeated observations of students, we estimate standard errors that 
account for clustering in the residual at the student level and weight the regressions by the student-
teacher dosages. 

After examining which types of students tend to have higher residuals, we analyze the 
relationship between these student characteristics and the precision and magnitude of their teachers’ 
pre- and post-shrinkage value-added estimates. We estimate the following teacher-level bivariate 
regression model, again using separate regressions for each student characteristic and grade span: 

(8) ௧ܹ ൌ ߙ ൅ ௧ܺߚ ൅  ௧ߝ

                                                 
12 We do not examine higher-order polynomials for pre-test scores. 
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where ௧ܹ  represents a measure of the precision or magnitude of the pre- or post-shrinkage value-
added estimate for teacher t. Specifically, for both pre- and post-shrinkage estimates, we examine as 
outcomes the natural log of the estimates’ variance, the absolute value of the estimates, and 
indicators for the estimates being above or below a given percentile of the value-added distribution. 
The vector ܺ௧ represents the average characteristics of the teacher’s students from Table 2, including 
measures of the student-equivalents taught by the teacher—the natural log of the total or the raw 
total. As we did in the student-teacher-level regressions, for ease of interpretation, we estimate 
separate regressions for each student characteristic (with the exception of eligibility for free or 
reduced-price lunch) and grade span. We calculate robust standard errors for each teacher. 

V. RESULTS 

Table 3 presents the results from the regressions that examine the relationship between student 
characteristics and the various outcomes. The first column displays the results from the student-
teacher-level regressions of the squared residuals on student characteristics and provides evidence 
that some groups of students have significantly larger residuals than others. This is consistent with 
heteroskedasticity and shows which types of students have achievement that is hard to predict. In 
elementary school, the hard-to-predict students are those who are eligible for free lunch, receive 
special education services, and have lower pre-test scores.13 The same characteristics are also 
significantly associated with larger residuals in middle school, as is limited English proficiency. These 
results are consistent with those of Stacy et al. (2012), who found higher residuals for students 
eligible for free lunch and students with lower prior test scores, but do not explicitly examine special 
education or limited English proficiency status. 

Consistent with the significant relationships between particular student characteristics and the 
student-level residuals, elementary school teachers assigned hard-to-predict students also have less 
precise value-added estimates. In column 2 of Table 3, we provide the results from teacher-level 
regressions, which separately regress the natural log of teachers’ pre-shrinkage variances on each of 
the characteristics of teachers’ students and the natural log of the teachers’ number of student-
equivalents.14 For elementary school teachers, a one-standard-deviation decrease in students’ average 
pre-test scores in math is significantly associated with a 20 percent increase in the teacher’s pre-
shrinkage variance. Lower pre-test scores in reading and free lunch eligibility are also significantly 
associated with higher pre-shrinkage variances in elementary school. Interestingly, limited English 
proficiency is significantly correlated with lower pre-shrinkage variances in elementary school, and 
                                                 

13 To determine whether students with very high or very low pre-test scores have larger residuals, as would be 
expected from measurement error in the tests, we also examined the relationship between the residuals and the absolute 
value of the pre-test scores, an indicator for having a below-mean pre-test score, and an interaction between the absolute 
value of the pre-test score and having a below-mean pre-test score (results not shown). Although having a pre-test score 
at either extreme of the distribution is associated with larger residuals, residuals are significantly higher for students at 
the bottom of the pre-test distribution than for those at the top. 

14 We use the natural log of the variance as the dependent variable in these specifications for two reasons. First, the 
natural log of the variance more closely meets the normality assumption for efficient ordinary least squares (OLS) 
estimates. Second, the specification reflects the theoretical relationship between the variance and observable 

characteristics: 2ˆ ˆln( ) ln( ) ln( ) ln( ) ln( )t t t t t tV N X N         , where ˆ
tV  is the estimated variance 

and tN  is the number of student equivalents. 
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there is no significant relationship between the pre-shrinkage variances and special education status. 
Having a larger number of students is associated with lower pre-shrinkage variances.15 

The same general patterns hold in middle school. Lower pre-test scores in math and reading, 
free lunch eligibility, and special education status are significantly associated with higher pre-
shrinkage variances. The magnitudes of the associations are generally larger for middle school 
teachers than for elementary school teachers. For example, a one standard deviation decrease in 
students’ math scores is significantly associated with a 64 percent increase in a teacher’s pre-
shrinkage variance in the middle school grades. Column 2 of Table 3 also investigates the 
relationship between the natural log of the teachers’ number of student-equivalents and the variance. 

These same relationships with student characteristics are significantly smaller for post-shrinkage 
variances. Recall that shrinkage increases the precision of estimates at the cost of intentionally 
introducing bias. This effect of shrinkage is reflected in columns 3 and 4 of Table 3. In column 3, we 
examine the relationships among teachers’ post-shrinkage variances, the characteristics of their 
students, and teachers’ number of student-equivalents. Compared with the pre-shrinkage variances, 
the post-shrinkage variances have the same number of statistically significant relationships with 
student characteristics, although the size of these correlations is significantly smaller for the post-
shrinkage variances. For example, for elementary school students, a one standard deviation decrease 
in students’ average pre-test scores in math is significantly associated with a 17 percent increase in 
the teacher’s post-shrinkage variance, compared with a 20 percent increase in the pre-shrinkage 
variance, a statistically significant difference. Statistical tests of the differences between the 
coefficients for pre-shrinkage and post-shrinkage models (columns 2 and 3, respectively) can be seen 
in column 4. Similarly, shrinkage also reduces the size of the relationships between free lunch 
eligibility and teachers’ number of student-equivalents and the estimates’ variance. 

 Shrinkage also affects the absolute value of the estimates of teachers with hard-to-predict 
students. Column 5 of Table 3 presents results from teacher-level regressions of the absolute value 
of teachers’ pre-shrinkage value-added estimates on student characteristics and teachers’ number of 
student-equivalents. In elementary school, the pre-shrinkage value-added estimates for teachers of 
students with lower pre-test scores and teachers with more students eligible for free lunch are 
significantly further from the overall teacher mean relative to the pre-shrinkage value-added 
estimates of other teachers.16 In middle school, student characteristics do not have a significant 
relationship with the absolute value of the pre-shrinkage value-added estimates, possibly because we 
lack the power to precisely estimate these relationships. In column 6, we examine the relationship 
between the absolute value of teachers’ post-shrinkage value-added estimates, student characteristics, 
and teachers’ number of student-equivalents. As before, student characteristics and teachers’ number 
of student-equivalents still have statistically significant relationships with the absolute values of the 

                                                 
15 The relationship coefficient on the natural log of the number of student equivalents is not –1, as would be 

expected from the equation in the previous footnote. This is likely due to correlations between class size and other 
student characteristics that are correlated with teachers’ variances. 

16 The absolute value is measured relative to the overall teacher mean, rather than the mean conditional on the 
characteristics of teachers’ students. The pre-shrinkage estimates could be related to the characteristics of teachers’ 
students if teachers are not equitably distributed. The results in columns 5 through 7 of Table 3 do not adjust for 
correlated teacher assignments. However, shrinkage is the only difference between the value-added estimates used in 
columns 5 and 6, so the difference in the relationships between student characteristics and the absolute values of the 
value-added estimates (column 7) can be attributed to shrinkage. 
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shrinkage estimates, but these relationships are weaker than their relationships with the pre-
shrinkage absolute values were. 

 We next assess how shrinkage affects the probability that teachers are assigned positive or 
negative consequences. We focus on the extremes of the distribution because teachers with such 
estimates are the most likely to be targeted for rewards or sanctions.17 In particular, we examine the 
relationship between student characteristics and indicator variables for whether the estimates fell 
into the top or bottom deciles of their distributions.18 We presume that districts “grade on a 
curve”—that is, they set thresholds for categories of effectiveness based on teachers’ positions in the 
value-added distribution. By using the same relative thresholds of effectiveness for pre- and post-
shrinkage estimates, we use different absolute thresholds as measured in standard deviations of 
teacher value added. Examining value-added estimates in a relative rather than absolute sense also 
affects how to think about how estimates change after shrinkage. In an absolute sense, all estimates 
move toward the center of the distribution, with less precise estimates moving more. In relative 
terms, however, relatively imprecise initial estimates will move toward the center, and relatively 
precise estimates will move toward the extremes only if they change places in a rank order with 
imprecise initial estimates. 

We present these results in Table 4. In column 1, using a linear probability model, we regress an 
indicator variable for the pre-shrinkage estimate falling in either the top or bottom deciles of the 
pre-shrinkage value-added distribution on each student characteristic and on teachers’ number of 
student-equivalents. For elementary school, we find that having students with low pre-test scores, 
students eligible for free lunch, or smaller numbers of students increases the probability that 
teachers’ pre-shrinkage estimates are in either the top or bottom deciles of the distribution. In 
middle school, there is no relationship between the characteristics of teachers’ students and the 
probability that the estimates fall in the top or bottom deciles. Column 2 examines the probability 
that the post-shrinkage estimate is either in the top or bottom deciles of the post-shrinkage value-
added distribution and column 3 tests whether the difference between the pre- and post-shrinkage 
relationships is statistically significant. We find that shrinkage has little effect on the probability that 
teachers of particular student groups are classified in the top or bottom deciles of the value-added 
distribution. Columns 4 through 6 repeat the same analysis using an indicator variable for the 
estimate falling in either the top or bottom quintiles of the distribution. Because the top and bottom 
quintiles cover a much larger range of teacher effectiveness, there are fewer significant relationships 
between student characteristics and the probability of the estimate’s being classified in either the top 
or bottom quintile, though the magnitude of some of the relationships appears to have increased. 
However, shrinkage does not significantly affect the probability that teachers of hard-to-predict 
students are classified in either the top or bottom quintiles of the value-added distribution. 
Shrinkage might make little difference in classifying teachers of hard-to-predict students when 
accountability thresholds are rescaled along with the estimates. 

 

                                                 
17 The probability that teachers in the top or bottom decile receive consequences depends on the weight that value-

added estimates receive in the overall evaluation, the correlation between value-added estimates and other evaluation 
components, and the placement of the thresholds. 

18 As a sensitivity analysis, we replace the top and bottom deciles by the top and bottom quintiles. 
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VI. CONCLUSION 

Recent work has raised concerns about the effect of heteroskedasticity on estimates of value 
added because heteroskedasticity can reduce the precision of value-added estimates for teachers of 
particular types of students (for example, Stacy et al. 2012). Because shrinkage adjusts value-added 
estimates by their level of precision, it might be viewed as a method to mitigate heteroskedasticity. 
This paper empirically investigates how shrinkage affects the relationship between student 
characteristics and the precision of value-added estimates, the absolute value of those estimates, and 
the probability that the estimates fall in the extremes of the value-added distribution. Consistent 
with heteroskedasticity, we find that particular student characteristics—lower pre-test scores and 
eligibility for free lunch—are correlated with the precision of a teacher’s estimate. We show that 
shrinking the estimates improves the precision of the adjusted estimates and reduces the absolute 
value of estimates for teachers with hard-to-predict students. However, in these data, shrinking has 
no statistically significant impact on the relative probability of exceeding a threshold for teachers of 
hard-to-predict students. 
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Table 1. Teacher Accountability Systems 

Evaluation 
System State/District Components 

Levels of Performance and 
Consequences 

Florida 
Teaching 
Evaluation 
System 

Florida Student performance (value-
added), instructional 
performance (FEAP), 
professional and job 
responsibilities 

Four levels of performance based 
on thresholds: highly effective, 
effective, needs improvement (or 
for teachers in the first 3 years, 
developing), and unsatisfactory. 
Performance levels for the value-
added component are determined 
by whether the 95% confidence 
interval falls above the average 
(highly effective), contains the 
average (effective), or falls below 
the average (unsatisfactory). 

IMPACT District of 
Columbia 
Public 
Schools 
(Washington, 
DC) 

50% student achievement 
(35% value-added and 15% 
teacher-assessed student 
data); 40% instructional 
expertise (classroom 
observations); and 10% 
commitment to school 
community (collaboration, 
professionalism) 
 

Four levels of performance based 
on thresholds: highly effective, 
effective, developing, and 
minimally effective. Determine 
advancement to Leadership 
Initiative for Teachers (LIFT) career 
stage, bonuses, base salary 
increases, and separation. 
 

Ohio Teacher 
Evaluation 
System 

Ohio 50% teacher performance 
(professional growth or 
improvement plan, 
observations, walk-
throughs, and conferences) 
and 50% student growth 
(teacher value-added 
combined with vendor or 
LEA measures) 
 

Four levels of performance based 
on a matrix that maps three levels 
of student growth and four levels 
of teacher performance into overall 
ratings: accomplished, proficient, 
developing, and ineffective. Local 
boards of education will use the 
evaluation results for retention and 
promotion decisions and for 
dismissals. 
 

Teacher 
Effectiveness 
(Phase II 
Implementation) 

Pennsylvania 50% observation; 15% 
building-level data (PSSA 
achievement, PVAAS 
growth, graduation rate, 
promotion rate, attendance, 
AP course participation, and 
SAT/PSAT); 15% teacher-
specific data (PSSA 
achievement, PVAAS 
growth, IEP growth, district 
rubrics); and 20% elective 
data 

Four levels of performance based 
on thresholds: distinguished, 
proficient, needs improvement, and 
failing. 
Needs improvement or failing 
results in participation in a 
performance improvement plan. 

Tennessee 
Educator 
Acceleration 
Model (TEAM) 

Tennessee 50% observations and 
conferences (at least four 
evaluations annually); 35% 
TVAAS; and 15% 
achievement measure (TCAP 
and EOC evaluations) 

Five levels of performance based 
on thresholds: significantly above 
expectations, above expectations, 
at expectations, below 
expectations, and significantly 
below expectations. Overall ratings 
determine eligibility for tenure and 
whether tenured teachers are 
returned to probationary status. 

 
Source: Authors’ research from state and district department of education websites. 

Note: Value-added scores are not available for teachers in all grades and subjects, so the 
weights on components might differ for teachers who do not receive these scores. 
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AP = advanced placement; EOC = end of course; FEAP = Florida Educator Accomplished Practices; IEP 
= individualized education plan; LEA = local education agency; PSAT = Preliminary Scholastic 
Aptitude Test; PSSA = Pennsylvania System of School Assessment; PVAAS = Pennsylvania Value-
Added Assessment System; SAT = Scholastic Assessment Test; TCAP = Tennessee Comprehensive 
Assessment Program; TVAAS = Tennessee Value-Added Assessment System.  
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Table 2. Teacher-Level Summary Statistics 

Variables Mean 
Standard 
Deviation Minimum Maximum 

Elementary School     
Math post-test score 0.02 0.57 -1.69 1.26 
Math pre-test score 0.02 0.55 -1.34 1.36 
Reading pre-test score 0.04 0.49 -1.21 1.25 
Free lunch eligible 0.69 0.27 0.00 1.00 
Reduced-price lunch eligible 0.06 0.06 0.00 0.23 
Limited English proficiency 0.08 0.14 0.00 0.68 
Special education 0.10 0.09 0.00 0.46 
Grade 4 0.50 0.49 0.00 1.00 
Grade 5 0.50 0.49 0.00 1.00 
Student-equivalents 23.73 12.03 5.03 83.40 
Pre-shrinkage value-added estimates 0.01 0.30 -0.90 0.96 
Estimated variance of pre-shrinkage value-
added estimates 

0.01 0.01 0.00 0.07 

Shrinkage value-added estimates 0.00 0.25 -0.77 0.71 
Estimated variance of shrinkage value-
added estimates 

0.01 0.01 0.00 0.04 

Number of teachers 297    
Middle School     

Math post-test score -0.04 0.49 -1.27 1.17 
Math pre-test score -0.05 0.50 -1.12 1.16 
Reading pre-test score -0.04 0.44 -1.28 1.06 
Free lunch eligible 0.72 0.21 0.00 0.98 
Reduced-price lunch eligible 0.07 0.05 0.00 0.33 
Limited English proficiency 0.08 0.13 0.00 0.58 
Special education 0.13 0.10 0.00 0.92 
Grade 6 0.39 0.45 0.00 1.00 
Grade 7 0.30 0.38 0.00 1.00 
Grade 8 0.31 0.40 0.00 1.00 
Student-equivalents 54.07 25.54 7.99 138.75 
Pre-shrinkage value-added estimates -0.01 0.20 -0.58 0.63 
Estimated variance of pre-shrinkage value-
added estimates 

0.01 0.01 0.00 0.04 

Shrinkage value-added estimates 0.00 0.17 -0.40 0.58 
Estimated variance of shrinkage value-
added estimates 

0.01 0.00 0.00 0.02 

Number of teachers 182    
 
Source: Administrative data from OSSE and DCPS. 

Note: Rows with student characteristics are based on teacher-level averages. Value added is 
estimated at the teacher level. 

DCPS = District of Columbia Public Schools; OSSE = Office of the State Superintendent of Education 
of the District of Columbia. 
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Table 3. Effects of Student Characteristics on Teacher Value-Added Estimates 

  

Log Variance of Individual 
Teacher Value-Added 

Estimates 
Absolute Value of Individual 

Teacher Value-Added Estimates 

Characteristic 
Squared 

Residuals 

Pre-
Shrinkag

e 

Post-
Shrinkag

e 
Differenc

e 

Pre-
Shrinkag

e 

Post-
Shrinkag

e 
Differenc

e 

 (1) (2) (3) (4) (5) (6) (7) 

Elementary        
Math pre-test 
score -0.08* -0.20* -0.17* 0.03* -0.07* -0.05* 0.02* 

 (0.01) (0.07) (0.05) (0.01) (0.02) (0.02) (0.01) 
Reading pre-
test score -0.08* -0.14* -0.12* 0.02 -0.06* -0.05* 0.01* 

 (0.01) (0.07) (0.06) (0.01) (0.02) (0.02) (0.01) 
Free lunch 
eligible 0.05* 0.34* 0.29* -0.05* 0.15* 0.12* -0.03* 

 (0.01) (0.12) (0.10) (0.02) (0.03) (0.03) (0.01) 
Reduced-price 
lunch eligible 

0.05 -0.80 -0.70 0.11 -0.10 -0.05 0.05 
(0.04) (0.63) (0.52) (0.12) (0.19) (0.15) (0.05) 

Limited 
English 
proficiency 

0.05 -0.91* -0.79* 0.12* -0.16* -0.11 0.05* 

(0.03) (0.21) (0.18) (0.02) (0.07) (0.06) (0.01) 

Special 
education 0.22* 0.22 0.18 -0.05 0.03 0.01 -0.01 

 (0.03) (0.41) (0.34) (0.07) (0.11) (0.09) (0.03) 
Log student 
equivalents 

 -0.63* -0.54* 0.09*    

  (0.07) (0.06) (0.01)    
Student-
equivalents 
/100 

    -0.09 -0.02 0.07* 

     (0.08) (0.06) (0.02) 
Number of 
observations 
(students) 
 

7546 n.a. n.a. n.a. n.a. n.a. n.a. 

Number of 
observations 
(teachers) 

n.a. 297 297 297 297 297 297 

Middle School        
Math pre-test 
score -0.18* -0.64* -0.54* 0.10* -0.01 0.01 0.02* 

 (0.01) (0.08) (0.07) (0.01) (0.02) (0.01) (0.00) 
Reading pre-
test score -0.15* -0.69* -0.58* 0.11* -0.02 0.00 0.02* 

 (0.01) (0.08) (0.07) (0.02) (0.02) (0.02) (0.01) 
Free lunch 
eligible 0.08* 0.67* 

(0.18) 
-1.61 
(0.83) 

0.57* -0.10* 0.05 0.03 -0.02* 

 (0.02) (0.16) (0.03) (0.04) (0.03) (0.01) 
Reduced-price 
lunch eligible 

-0.02 
(0.03) 

-1.38 0.23 -0.24 -0.15 0.09* 
(0.71) (0.13) (0.15) (0.13) (0.03) 

Limited 
English 
proficiency 

0.08* -0.26 -0.19 0.07 -0.03 -0.01 0.02 

(0.03) (0.30) (0.25) (0.05) (0.08) (0.07) (0.01) 
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Log Variance of Individual 
Teacher Value-Added 

Estimates 
Absolute Value of Individual 

Teacher Value-Added Estimates 

Characteristic 
Squared 

Residuals 

Pre-
Shrinkag

e 

Post-
Shrinkag

e 
Differenc

e 

Pre-
Shrinkag

e 

Post-
Shrinkag

e 
Differenc

e 

 (1) (2) (3) (4) (5) (6) (7) 

Special 
education 0.32* 1.72* 1.42* -0.30* -0.03 -0.08 -0.05 

 (0.03) (0.35) (0.29) (0.07) (0.07) (0.05) (0.03) 
Log student 
equivalents 

 -0.66* -0.56* 0.10*    

  (0.07) (0.06) (0.01)    
Student-
equivalents 
/100 

    0.01 0.04 0.02* 

     (0.03) (0.03) (0.01) 
Number of 
observations 
(students) 

  9930              n.a n.a. n.a. n.a. n.a. n.a. 

Number of 
observations 
(teachers) 

n.a.    182 182 182 182 182 182 

 
Source: Administrative data from OSSE and DCPS. 

Note: Each group of cells displays the results from a separate regression. In column 1, the 
results in the first four rows are from a student-level regression of the squared residuals 
from the value-added model on the student characteristics. The remaining columns are 
teacher-level regressions. In columns 2 and 3, the outcome is the natural log of the 
value-added estimates’ variance. Column 4 tests the statistical significance of the 
difference in the relationship between student characteristics and the natural log of the 
value-added estimates’ variance. In columns 5 and 6, the outcome is the absolute value 
of the value-added estimates. Column 7 tests the statistical significance of the difference 
in the relationship between student characteristics and the absolute value of the value-
added estimates. Robust standard errors are in parentheses. 

   *Significantly different from zero at the .05 level, two-tailed test. 

DCPS = District of Columbia Public Schools; OSSE = Office of the State Superintendent of Education 
of the District of Columbia. 

n.a. = not applicable. 
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Table 4. Effects of Student Characteristics on Distribution of Teacher Value-Added 
Estimates 

 
Probability in Either the Bottom or 

Top Decile 
Probability in Either the Bottom or 

Top Quintile 

Characteristic 
Pre-

Shrinkage 
Post-

Shrinkage 
Differenc

e 
Pre-

Shrinkage 
Post-

Shrinkage 
Differenc

e 

 (1) (2) (3) (4) (5) (6) 

Elementary 
School 

     
 

Math pre-test 
score -0.14* -0.14* 0.00 -0.16* -0.15* 0.01 

 (0.04) (0.04) (0.01) (0.05) (0.05) (0.02) 
Reading pre-
test score -0.12* -0.13* -0.01 -0.15* -0.14* 0.01 

 (0.05) (0.05) (0.01) (0.05) (0.05) (0.03) 
Free lunch 
eligible 0.25* 0.24* -0.01 0.42* 0.36* -0.06 

 (0.07) (0.07) (0.01) (0.09) (0.09) (0.04) 
Reduced-
price lunch 
eligible 

-0.35 -0.23 0.12 -0.08 0.13 0.21 

 (0.39) (0.40) (0.14) (0.46) (0.47) (0.21) 
Limited 
English 
proficiency 

-0.17 -0.15 0.02 -0.22 -0.22 0.00 

 (0.13) (0.13) (0.03) (0.18) (0.18) (0.04) 
Special 
education -0.23 -0.12 0.11 0.20 -0.04 -0.24 

 (0.24) (0.25) (0.09) (0.33) (0.32) (0.20) 
Student-
equivalents 
/100 

-0.35* -0.32* 0.04 -0.19 0.06 0.25 

 (0.16) (0.16) (0.04) (0.25) (0.25) (0.14) 
Number of 
teachers 297 297 297 297 297 297 

Middle School       
Math pre-test 
score -0.01 0.02 0.03 0.04 0.10 0.05 

 (0.06) (0.06) (0.05) (0.07) (0.07) (0.03) 
Reading pre-
test score -0.05 -0.02 0.04 0.05 0.09 0.03 

 (0.07) (0.06) (0.07) (0.08) (0.08) (0.02) 
Free lunch 
eligible 0.12 0.19 0.07 -0.05 -0.12 -0.07 

 (0.14) (0.13) (0.12) (0.18) (0.18) (0.06) 
Reduced-
price lunch 
eligible 

-0.51 -0.27 0.24 -0.69 -0.44 0.25 

 (0.56) (0.55) (0.32) (0.66) (0.67) (0.22) 
Limited 
English 
proficiency 

-0.14 -0.14 0.00 -0.27 -0.25 0.02 

 (0.19) (0.19) (0.07) (0.28) (0.28) (0.06) 
Special 0.14 -0.13 -0.27 -0.28 -0.56 0.25 



Shrinkage and Students with Hard-to-Predict Achievement  Mathematica Policy Research 

 22  

 
Probability in Either the Bottom or 

Top Decile 
Probability in Either the Bottom or 

Top Quintile 

Characteristic 
Pre-

Shrinkage 
Post-

Shrinkage 
Differenc

e 
Pre-

Shrinkage 
Post-

Shrinkage 
Differenc

e 

 (1) (2) (3) (4) (5) (6) 

education 
 (0.30) (0.22) (0.26) (0.34) (0.33) (0.22) 
Student-
equivalents 
/100 

-0.05 0.06 0.12 0.13 0.22 0.09 

 (0.11) (0.11) (0.10) (0.14) (0.14) (0.06) 
Number of 
teachers 182 182 182 182 182 182 

 
Source: Administrative data from OSSE and DCPS. 

Note: Each group of cells displays the results from a separate teacher-level regression. In 
columns 1 and 2, the outcome is the probability the teacher value-added estimate is 
below the 10th or above the 90th percentile of estimates. Column 3 tests the statistical 
significance of the difference in the relationship between student characteristics and the 
probability of being below the 10th or above the 90th percentile of estimates. In 
columns 4 and 5, the outcome is the probability the teacher value-added estimate is 
below the 20th or above the 80th percentile of estimates. Column 6 tests the statistical 
significance of the difference in the relationship between student characteristics and the 
probability the teacher value-added estimate is below the 20th or above the 80th 
percentile of estimates. Robust standard errors are in parentheses. 

  *Significantly different from zero at the .05 level, two-tailed test. 

DCPS = District of Columbia Public Schools; OSSE = Office of the State Superintendent of Education 
of the District of Columbia. 
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